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1 LPT, Université Paris-Sud – CNRS, 91405 Orsay, France
2 Soltan Institute for Nuclear Studies, Warsaw, Poland
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Abstract. We present an estimate of the cross-section for the exclusive production of a ρ0L-meson pair in
e+e− scattering, which will be studied in the future high-energy International Linear Collider. For this aim,
we complete calculations of the Born order approximation of the amplitudes γ∗L,T(Q

2
1)γ
∗
L,T(Q

2
2)→ ρ

0
Lρ
0
L,

for arbitrary polarization of virtual photons and longitudinally polarized mesons, in the kinematical re-
gion s�−t,Q21, Q

2
2. These processes are completely calculable in the hard region Q

2
1, Q

2
2� Λ

2
QCD, and

we perform most of the calculations in an analytical way. The resulting cross-section turns out to be large
enough for this process to be measurable with foreseen luminosity and energy, for Q21 and Q

2
2 in the range of

a few GeV2.

1 Introduction

The next generation of e+e− colliders will offer a possibil-
ity of clean testing of QCD dynamics. By selecting events
in which two vector mesons are produced with large rapid-
ity gap, through scattering of two highly virtual photons,
one is getting access to the kinematical regime in which the
perturbative approach is justified. If additionally one se-
lects the events with comparable photon virtualities, the
perturbative Regge dynamics of QCD of the BFKL [1–4]
type should dominate with respect to the conventional par-
tonic evolution of DGLAP [5–9] type. Several studies of
BFKL dynamics have been performed at the level of the
total cross-section [10–17].
In [18] the diffractive production of two J/Ψ mesons

was studied as a promising probe of the BFKL effects. Re-
cently, we have advocated [19–24] the idea that the electro-
production of two ρ mesons in γ∗γ∗ offers the same advan-
tages. In this case the virtualities of the scattered photons
play the role of the hard scales. A first step in this direction
was made by considering this process with longitudinally
polarized photons and ρmesons,

γ∗L(q1)γ
∗
L(q2)→ ρ

0
L(k1)ρ

0
L(k2) , (1)

for arbitrary values of t = (q1− k1)2, with s�−t. The
choice of longitudinal polarizations of both the scattered
photons and produced vector mesons was dictated by the
fact that this configuration of the lowest twist, twist 2,

a e-mail: Samuel.Wallon@th.u-psud.fr

gives the dominant contribution in the powers of the hard
scaleQ2, when Q21 ∼Q

2
2 ∼Q

2.
The aim of this study is to complete the Born order

evaluation of the cross-section of the process

e+e−→ e+e−ρ0Lρ
0
L , (2)

illustrated in Fig. 1. We calculated contributions with re-
maining combinations of polarizations of virtual photons
necessary to obtain all helicity amplitudes of the processes

γ∗L,T(q1)γ
∗
L,T(q2)→ ρ

0
L(k1)ρ

0
L(k2) . (3)

Let us note that the double tagging of final leptons gives
in particular the possibility to separate the contributions of
various photon polarizations, entering in (2), and thus to
study the corresponding parts of the cross-sections, which
are computed in this paper. We are focusing here on the
high-energy limit in which t-channel gluonic exchanges

Fig. 1. Amplitude for the process e+e−→ e+e−ρ0Lρ
0
L
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dominate. On the other hand, in the description of the pro-
cess (2), there is a possibility that also contributions with
rather small sγ∗γ∗ have to be taken into account. In this
case one should include in principle both quark and gluon
exchanges. The contribution of quark exchange was ana-
lyzed in [25]. This quark-box contribution is investigated in
Sect. 4.3.
We will also not consider here the case of transver-

sally polarized ρ mesons. It would require one to deal
with possible breaking of QCD factorization [26–30], al-
though a method to overcome this problem has been pro-
posed [31–33].
The BFKL enhancement was studied for t= 0 in [23, 24,

34, 35]. In this latter case, the peculiar value t= 0 automat-
ically selects the longitudinally polarized photon. A ded-
icated study for arbitrary value of t should thus be per-
formed to get an evaluation of BFKL enhancement effects
of the Born order evaluation performed in the present pa-
per for transversally polarized photon. This problem will
not be addressed here.

2 Kinematics

The measurable cross-section for the process (2) of Fig. 1
is related to the amplitude of the process (3), illustrated
in Fig. 2, through the usual flux factors for respectively
transversally and longitudinally polarized photons,

t(yi) =
1+(1−yi)2

2
, l(yi) = 1−yi , (4)

where yi (i = 1, 2) are the longitudinal momentum frac-
tions of the bremsstrahlung photons with respect to the
incoming leptons. This relation reads [36]

dσ
(
e+e−→ e+e−ρ0Lρ

0
L

)

dy1dy2dQ21dQ
2
2

=
1

y1y2Q
2
1Q
2
2

(
α

π

)2[
l(y1)l(y2)σ

(
γ∗Lγ

∗
L→ ρ

0
Lρ
0
L

)

+ t(y1)l(y2)σ
(
γ∗Tγ

∗
L→ ρ

0
Lρ
0
L

)

+ l(y1)t(y2)σ
(
γ∗Lγ

∗
T→ ρ

0
Lρ
0
L

)

+ t(y1)t(y2)σ
(
γ∗Tγ

∗
T→ ρ

0
Lρ
0
L

)]
.

(5)

The presence of hard scales Q2i permits us to apply the
collinear approximation at each qq̄ρ-meson vertex, and the

Fig. 2.The amplitude of the process γ∗(Q1)γ
∗(Q2)

→ ρ0L(k1)ρ
0
L(k2) with the collinear factorization in

the qq̄ρ vertices

Fig. 3. The amplitude MH
in the impact representation.
The vertical blob symbol-
izes the interaction of two
qq̄ dipoles through gluon ex-
changes at high s

use of the distribution amplitude (DA) for describing the
qq̄ content of the ρ mesons, as illustrated in Fig. 2. In this
paper, except for Sect. 4.3, the amplitude MH will be de-
scribed using the impact representation, valid at high en-
ergy, as illustrated in Fig. 3.
Let us introduce the two light-like Sudakov vectors q′1

and q′2, which form a natural basis for two scattered vir-
tual photons, which satisfy 2q′1 ·q

′
2 ≡ s∼ 2q1 ·q2. The usual

sγ∗γ∗ is related to the useful auxiliary variable s by sγ∗γ∗ =
s−Q21−Q

2
2. The momentum transfer in the t-channel is

r = k1− q1. In this basis, the incoming photon momenta
read

q1 = q
′
1−
Q21
s
q′2 and q2 = q

′
2−
Q22
s
q′1 . (6)

The polarization vectors of longitudinally polarized pho-
tons are

εL(1)µ =
q1µ

Q1
+
2Q1
s
q′2µ and εL(2)µ =

q2µ

Q2
+
2Q2
s
q′1µ , (7)

with ε2L(i) = 1 and qi · εL(i) = 0, whereas the polarization
vectors of transversally polarized photons are two dimen-
sional transverse vectors satisfying ε2T(i) =−1 (i= 1, 2) and
qi · εT(i) = 0.
We label the momentum of the quarks and antiquarks

entering the meson wave functions as l1 and l
′
1 for the up-

per part of the diagram and l2 and l
′
2 for the lower part (see

Fig. 3).
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In the basis (6), the vector meson momenta can be ex-
panded in the form

k1 = α(k1)q
′
1+

r2

α(k1)s
q′2+ r⊥ ,

k2 = β(k2)q
′
2+

r2

β(k2)s
q′1− r⊥ . (8)

Note that our convention is such that for any transverse
vector v⊥ in Minkowski space, v denotes its Euclidean
form. In the following, we will treat the ρ meson as being
massless. α and β are very close to unity (explicit expres-
sions can be found in [22]), and read

α(k1)� 1−
Q22+ r

2

s
+O

(
1

s2

)
,

β(k2)� 1−
Q21+ r

2

s
+O

(
1

s2

)
, (9)

where r2 = −r2⊥. They will be replaced by 1 in the phe-
nomenological applications of Sects. 4 and 5. In this
decomposition, it is straightforward to relate t = r2 to r2

through the approximate relation

t∼−
Q21Q

2
2

s
− r2
(
1+
Q21
s
+
Q22
s
+
r2

s

)
(10)

(see [22] for an exact relation). From (10) the threshold for
|t| is given by |t|min =Q21Q

2
2/s, corresponding to r⊥ = 0. In

the kinematical range we are interested in, the relation (10)
can be approximated as r2 =−t, as usually in the Regge
limit.
The links with the e+e− process can be made by using

the same Sudakov basis for the two incoming leptons:

p1 =
1

y1
q′1+y1

p2
1

s
q′2+p⊥1

and p2 =
1

y2
q′2+y2

p2
2

s
q′1+p⊥2 ,

p2
i
=
1−yi
y2i
Q2i . (11)

Thus, one gets

se+e− =
s

y1y2

(
1+
(1−y1)(1−y2)Q21Q

2
2

s2

)
−2p

1
·p
2
.

In the rest of the paper, since we keep only the dominant
s contribution, we use the approximate relation se+e− ∼
s/(y1y2).

3 Impact representation

The impact factor representation of the scattering ampli-
tude for the process (3) has the form (see Fig. 4)

M= is

∫
d2k

(2π)4k2(r−k)2
J γ

∗
L,T(q1)→ρ

0
L(k1)(k, r−k)

×J γ
∗
L,T(q2)→ρ

0
L(k2)(−k,−r+k) , (12)

Fig. 4.AmplitudeMH at Born order. The t-channel gluons are
attached to the quark lines in all possible ways

where J γ
∗
L,T(q1)→ρ

0
L(k1)(k, r− k) (J γ

∗
L,T(q2)→ρ

0
L(k2)(k, r−

k)) are the impact factors corresponding to the transition
of γ∗L,T(q1)→ ρ

0
L(k1) (γ

∗
L,T(q2)→ ρ

0
L(k2)) via the t-channel

exchange of two gluons. The amplitude (12) calculated
in Born order depends linearly on s (or sγ∗γ∗ when neg-
lecting terms of order Q2i /s) as the impact factors are s-
independent.
Calculations of the impact factors in the Born approxi-

mation1are standard [37]. They are obtained by assuming
the collinear approximation at each qq̄ρ-meson vertex. Pro-
jecting the (anti-) quark momenta on the Sudakov basis q′1
and q′2,

l1 = z1q
′
1+ l⊥1+ z1r⊥−

(l⊥1+ z1r⊥)
2

z1s
q′2 ,

l′1 = z̄1q
′
1− l⊥1+ z̄1r⊥−

(−l⊥1+ z̄1r⊥)2

z̄1s
q′2 ,

l2 = z2q
′
2+ l⊥2− z2r⊥−

(l⊥2− z2r⊥)2

z2s
q′1 ,

l′2 = z̄2q
′
2− l⊥2− z̄2r⊥−

(−l⊥2− z̄2r⊥)2

z̄2s
q′1 , (13)

we put the relative momentum li⊥ to zero. For longitudi-
nally polarized photons the impact factor reads

J γ
∗
L(qi)→ρL(ki)(k, r−k)

= 8π2αs
e
√
2

δab

2Nc
Qifρα(ki)

∫ 1

0

dzi ziz̄iφ(zi)PP(zi, k, r, µi) ,

(14)

where the expression

PP(zi, k, r, µi) =
1

z2i r
2+µ2i

+
1

z̄2i r
2+µ2i

−
1

(zir−k)2+µ2i

−
1

(z̄ir−k)2+µ2i
(15)

1 Now, the forward impact factor of the γ∗L(Q
2)→ ρ0L transi-

tion has been calculated at the next-to-leading order accuracy
in [38].
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originates from the impact factor of quark pair production
from a longitudinally polarized photon.
For transversally polarized photons, one obtains

J γ
∗
T(qi)→ρL(ki)(k, r−k)

= 4π2αs
e
√
2

δab

2Nc
fρα(ki)

×

∫ 1

0

dzi (zi− z̄i)φ(zi)ε ·Q(zi, k, r, µi) , (16)

where

Q(zi, k, r, µi) =
zir

z2i r
2+µ2i

−
z̄ir

z̄2i r
2+µ2i

+
k− zir

(zir−k)2+µ2i

−
k− z̄ir

(z̄ir−k)2+µ2i
(17)

is proportional to the impact factor of quark pair produc-
tion from a transversally polarized photon.
In the formulae (15) and (17) and for the rest of the

paper, we denote µ2i =Q
2
i ziz̄i+m

2, where m is the quark
mass. The limit m→ 0 is regular, and we will restrict our-
selves to the light quark case, thus taking m = 0. Both
impact factor (15) and (17) vanish when k→ 0 or r−k→ 0
due to QCD gauge invariance.
In the formulae (14) and (16), φ is the distribution

amplitude of the produced longitudinally polarized ρ0-me-
sons. For the case with quark q of one flavor it is defined
(see, e.g. [39]) by the matrix element of the non-local,
gauge invariant correlator of quark fields on the light cone

〈
0|q̄(x)γµq(−x)|ρL(p) = q̄q

〉
= fρp

µ

∫ 1

0

dz ei(2z−1)(px)φ(z) ,

(18)

where the coupling constant is fρ = 216MeV, and where
the gauge links are omitted to simplify the notation. φ is
normalized to unity. The amplitudes for the production of
ρ0’s are obtained by noting that |ρ0〉= 1/

√
2(|ūu〉− |d̄d〉).

Note that (18) corresponds to the leading twist collinear
distribution amplitude. Such an object can be used strictly
speaking for asymptotically large Q2. In the phenomeno-
logical application of Sects. 4.2 and 5.3, in order to get
measurable cross-sections, the dramatic decrease of the
amplitudes with increase of Q2i , combined with the experi-
mental conditions of the ILC project, requires rather low
values of Q2i (of the order of 1 GeV

2), for which sublead-
ing twist contributions could be significant. This can be
taken into account within a more phenomenological ap-
proach that incorporates an intrinsic kT quark distribution
and that goes beyond standard QCD collinear factoriza-
tion [40, 41]. In the present paper we do not consider these
effects and adhere to the collinear QCD factorization.
Let us label the amplitudes for the scattering pro-

cess (3) through the polarization of the incoming virtual
photons as Mλ1λ2 . They can be calculated using (12)
and (14)–(17) supplemented by the choice of the transverse
polarization vectors of the photons,

ε± =
1
√
2
(∓1,−i) (19)

and the longitudinal polarization vectors (7). For the case
λ1 = λ2 = 0:

M00 = isCQ1Q2

×

∫ 1

0

dz1dz2 z1z̄1φ(z1)z2z̄2φ(z2)M00(z1, z2) ,

(20)

with

M00(z1, z2) =

∫
d2k

k2(r−k)2
PP(z1, k, r, µ1)

×PP(z2,−k,−r, µ2) ; (21)

for the case λ2 =+,−:

M0λ2 = is
C

2
Q1

×

∫ 1

0

dz1dz2 z1z̄1φ(z1)(z2− z̄2)φ(z2)M0λ2(z1, z2) ,

(22)

with

M0λ2(z1, z2) =

∫
d2k

k2(r−k)2
PP(z1, k, r, µ1)

×Q(z2,−k,−r, µ2) · ε
λ2 ; (23)

for the case λ1 =+,−:

Mλ10 = is
C

2
Q2

×

∫ 1

0

dz1dz2 (z1− z̄1)φ(z1)z2z̄2φ(z2)Mλ10(z1, z2) ,

(24)

with

Mλ10(z1, z2) =

∫
d2k

k2(r−k)2
Q(z1, k, r, µ1) · ε

λ1

×PP(z2,−k,−r, µ2) . (25)

and for the case λ1 =+,−, λ2 =+,−:

Mλ1λ2 = is
C

4

∫ 1

0

dz1dz2 (z1− z̄1)φ(z1)(z2− z̄2)φ(z2)

×Mλ1λ2(z1, z2) , (26)

with

Mλ1λ2(z1, z2) =

∫
d2k

k2(r−k)2
Q(z1, k, r, µ1) · ε

λ1(1)

×Q(z2,−k,−r, µ2) · ε
λ2(2) . (27)

Here and in the rest of this paper, we denoteC = 2π
N2c−1

N2c
×

α2sαemf
2
ρ . In terms of the above amplitudes, the corres-

ponding differential cross-sections can be expressed in the
large s limit (neglecting terms of order Q2i /s) as

dσ
γ∗λ1
γ∗λ2
→ρ0Lρ

0
L

dt
=
|Mλ1λ2 |

2

16πs2
, (28)

and it does not depend on s.



M. Segond et al.: Diffractive production of two ρ0L mesons in e
+e− collisions 97

4 Non-forward Born order differential
cross-section for γ�L,Tγ

�

L,T→ ρ
0
Lρ
0
L

4.1 Analytical results
for k�-integrated amplitudeMλ1λ2

In this section we summarize the results for the ampli-
tudes Mλ1λ2 obtained after performing analytically the
k⊥ integrals. Such analytic expressions give us the effect-
ive possibility of studying various kinematical limits in the
variables Q21, Q

2
2 and t. The k⊥ integrations were done

using the method of [22], which exploits in an efficient way
the scaling properties of integrals appearing in conformal
field theories. The generic k⊥ integral involves an integrand
that corresponds to a box diagram with two distinct mas-
sive propagators and two massless propagators. Because
of that, the k⊥ integrations result in long and complicate
expressions. Thus, we discuss below only the general struc-
ture of the results and we relegate all technical details of k⊥
integrations to the appendix.
In the transverse–transverse (TT) case, the amplitude

can be expressed in terms of two projection operators in
the transverse plane as follows:

Mλ1λ2(z1, z2) =

[
a(r;Q1, Q2; z1, z2)

(
δij−

rirj

r2

)

+ b(r;Q1, Q2; z1, z2)
rirj

r2

]
ελ1i ε

λ2
j ,

(29)

where we denote r2 = r2.
Combining (26) and (29), and using |M++|2 = |M−−|2,

one gets in the case of two photons with the same polariza-
tion

|M++|
2 = |M−−|

2

= s2
C2

64

∣
∣
∣
∣

∫ 1

0

dz1dz2 (z1− z̄1)φ(z1)(z2− z̄2)φ(z2)

× (b(r;Q1, Q2; z1, z2)−a(r;Q1, Q2; z1, z2))

∣
∣
∣
∣

2

,

(30)

and analogously for different polarizations:

|M+−|
2 = s2

C2

64

×

∣
∣
∣
∣

∫ 1

0

dz1dz2 (z1− z̄1)φ(z1)(z2− z̄2)φ(z2)

× (b(r;Q1, Q2; z1, z2)+a(r;Q1, Q2; z1, z2))

∣
∣
∣
∣

2

.

(31)

For the longitudinal–transverse (LT) case, restoring the
dependency over all variables, one defines from (23)
and (25) the scalar function f ,

M0λ(r;Q1, Q2; z1, z2) = f(r;Q1, Q2; z1, z2)r · ε
λ ,
(32)

or equivalently

Mλ0(r;Q1, Q2; z1, z2) = f(r;Q2, Q1; z2, z1)r · ε
λ ,
(33)

which leads to

|M0+|
2 = |M0−|

2

= s2
C2

8
Q21r

2

∣
∣∣
∣

∫ 1

0

dz1dz2 z1z̄1φ(z1)(z2− z̄2)φ(z2)

×f(r;Q1, Q2; z1, z2)

∣
∣∣
∣

2

. (34)

and analogously for the transverse–longitudinal (TL) case,

|M+0|
2 = |M−0|

2

= s2
C2

8
Q22r

2

∣
∣
∣
∣

∫ 1

0

dz1dz2 z2z̄2φ(z2)(z1− z̄1)φ(z1)

×f(r;Q2, Q1; z2, z1)

∣
∣
∣
∣

2

. (35)

The expressions of a(r;Q1,Q2;z1,z2), b(r;Q1,Q2;z1,z2)
and f(r;Q1, Q2; z1, z2) presented as combinations of finite
standard integrals are given in the appendix.
For the longitudinal–longitudinal (LL) case, it turned

out [22] that (20) can be effectively replaced by M̃(z1, z2),
whose integral over z1,2 with symmetrical DA gives the

same result. M̃(z1, z2) reads

M̃00(z1, z2) =−

(
1

z21r
2+µ21

+
1

z̄21r
2+µ21

)
J3µ2(z2)

−

(
1

z22r
2+µ22

+
1

z̄22r
2+µ22

)
J3µ1(z1)

+J4µ1µ2(z1, z2)+J4µ1µ2(z̄1, z2) . (36)

J3µ and J4µ1µ2 are two dimensional integrals with respec-
tively 3 propagators (1 massive) and 4 propagators (2 mas-
sive, with different masses); they are both IR and UV fi-
nite. Their expressions are given in the appendix.
Due to the collinear conformal subgroup SL(2,R) in-

variance [42], the ρ0L distribution amplitude has an expan-
sion in terms of Gegenbauer polynomials of even order,
which reads

φ(z) = 6z(1− z)

(
1+

∞∑

n=1

a2nC
3/2
2n (2z−1)

)
. (37)

Except for a short discussion in Sect. 5.3, we restrict our-
selves to the asymptotical distribution amplitude corres-
ponding to a2n = 0.
To complete the evaluation of the amplitude M, one

needs to integrate over the quark momentum fractions z1
and z2 in the ρ mesons. For arbitrary values of t, it seems
not possible to perform the z1 and z2 integrations ana-
lytically. We thus do them numerically. We observe the
absence of the end-point singularity when z1(2) → 0 or
z1(2)→ 1. Indeed, for the longitudinal polarizations involv-
ing PP as defined in (15), the z divergency of types 1/z and
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1/(1− z) is compensated by the zz̄ factor when z→ 0, 1,
while for transverse polarizations, involving Q as defined
in (17), there is no singularity, since Q is itself regular.
For the special case t= tmin (where only the LL ampli-

tude is non-vanishing), which will be useful in the discus-
sion of Sects. 4.2 and 5.3, the integration over zi can be
performed analytically, with the result [22]

M00 =−is
N2c −1

N2c
α2sαemf

2
ρ

9π2

2

1

Q21Q
2
2

[
6

(
R+

1

R

)
ln2R

+12

(
R−

1

R

)
lnR+12

(
R+

1

R

)

+

(
3R2+2+

3

R2

)
(
ln(1−R) ln2R− ln(R+1) ln2R

−2Li2(−R) lnR+2Li2(R) lnR

+2Li3(−R)−2Li3(R)
)
]
, (38)

where R =Q1/Q2. When Q1 =Q2, (38) simplifies to

M00 = is
N2c −1

N2c
α2sαemf

2
ρ

9π2

Q4
(14ζ(3)−12) . (39)

4.2 Results for differential cross-section

The formulae for Mλ1λ2 obtained in Sect. 4 permit us
to evaluate the magnitudes of cross-sections (28) of the
diffractive double rho production for different helicities of
the virtual photons. In our estimates we use as a strong
coupling constant the three-loop running αs(Q1Q2) with

Λ
(4)

MS
= 305MeV (see, e.g. [43]).2

In Fig. 5 we display the t-dependence of the differ-
ent γ∗L,Tγ

∗
L,T→ ρ

0
Lρ
0
L differential cross-sections for various

values ofQ=Q1 =Q2.
We first note the strong decrease of all the cross-

sections when Q21,2 increase. For LL, this follows from an
obvious dimensional analysis, since

MLL ∝
sf2ρ

Q4

(for Q1 =Q2 =Q), in agreement with (39).
Secondly, all the differential cross-sections that involve

at least one transverse photon vanish when t= tmin. It is
due to the vanishing of the function Q for r = 0 (see (17)).
Physically, this fact is related to the s-channel helicity con-
servation at t = tmin. Indeed, since the t-channel gluons
carry non-sense polarizations, helicity conservation occurs
separately in each impact factor.

2 Running of αs is in principle a subleading effect with re-
spect to our treatment. Nevertheless, numerically, as we discuss
in Sect. 5.3, the dependence of our predictions for the rates in
e+e− scattering on the choice of αs is negligible at Born order,
but it is more subtle when LO BFKL corrections are taken into
account.

Fig. 5. Differential cross-sections for the process γ∗L,Tγ
∗
L,T→

ρ0Lρ
0
L. The solid curve corresponds to the γ

∗
Lγ
∗
L mode, the dot-

ted one to the γ∗Lγ
∗
T mode, the dashed and the dashed-dotted

ones to the γ∗Tγ
∗
T′ modes with respectively the same T = T

′

and different T �=T′ transverse polarizations. The different fig-
ures a–c correspond to different values of Q1 =Q2

In Fig. 6, we show the shape of the integrandsMλ1,λ2 of
the various amplitudesMλ1λ2 as a function of z1 and z2, as
they appear in formulas (22), (24) and (26):

M00 = z1z̄1φ(z1)z2z̄2φ(z2)M00(z1, z2) , (40)

and for λi =+,−

Mλ10 = (z1− z̄1)φ(z1)z2z̄2φ(z2)Mλ10(z1, z2) , (41)

Mλ1λ2 = (z1− z̄1)φ(z1)(z2− z̄2)φ(z2)Mλ1λ2(z1, z2) .
(42)
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Fig. 6. Shape of the amplitudes M00, −M+0, M++, −M+− as functions of z1 and z2, for −t= 0.16 GeV
2 and Q1 =Q2 = 1GeV

Mλ1λ2(z1, z2) is symmetric under (zi↔ z̄i) for longitudi-
nal polarization, λi = 0 (cf. (15)) and antisymmetric under
(zi↔ z̄i) for transverse polarization, λi =+,− (cf. (17));
thus the factors ziz̄i for λi = 0 and zi− z̄i for λi = +,−
ensure the symmetry of Mλ1λ2 under (zi↔ z̄i) as we can
see on Fig. 6. Because of the ρ0L meson distribution ampli-
tudes φ(zi), Mλ1λ2(z1, z2) vanishes for any polarization in
the end-point region. Consequently the case of transverse
polarization vanishes in the central region zi = z̄i = 1/2
and also in the end-point region zi close to 0 or 1, so that
it restricts the available zi phase space and reduces the
resulting differential cross-section, in agreement with the

Fig. 7. Shape of the am-
plitude −M+−, for −t=
0.01 GeV2 (left) and
−t = 0.8 GeV2 (right),
with Q1 =Q2 = 1GeV

dominance of longitudinal photons (helicity conservation)
in the process γ∗L,Tγ

∗
L,T→ ρ

0
Lρ
0
L.

The amplitude involving at least one transverse pho-
ton has a maximum at low −t value with respect to Q1Q2.
Figure 6 corresponds to −t= 0.16GeV2, which is a typical
value for the region where the cross-sections with trans-
verse photons in Fig. 5 are maximal.
A peculiarly characteristic shape appears in the ampli-

tudes with two transverse photons, as shown in the bottom
panels of Fig. 6. When the value of t changes towards tmin,
the peaks become very narrow, as shown in the left panel in
Fig. 7 for M+−. For t very close to tmin they are practically
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Fig. 8. Differential cross-sections for the process γ∗L,Tγ
∗
L,T→

ρ0Lρ
0
L, for small value of t. The solid curve corresponds to the

γ∗Lγ
∗
L mode, the dotted one to the γ

∗
Lγ
∗
T mode, the dashed and

the dashed-dotted ones to the γ∗Tγ
∗
T′ modes with respectively

the same T = T′ and different T �=T′ transverse polarizations,
for Q1 =Q2 = 1GeV

concentrated only on the boundary, which leads to the van-
ishing of the amplitude. On the other hand, when the value
of t increases and leaves the maximum of the cross-sections,
the peaks in Fig. 6 decrease and spread, as shown for M+−
in the right panel of Fig. 7.
In the case of LT polarizations, the shape of the am-

plitude M+0, which contains only one factor (zi− z̄i), is
shown in the right upper panel of Fig. 6. Comparison with
the upper left panel of Fig. 6, showing the shape of the M00
amplitude, leads to the conclusion that M+0 shares some
properties with M+− and M00. In particular, the presence
of a transverse polarization leads to the vanishing of M+0
at t= tmin. On the other hand, the presence of longitudinal
polarization increases the cross-section at small values of
t. As a consequence of the competition of these two mech-
anisms, the maximum of the cross-section determined by
M+0 is located closer to tmin than in the case of the cross-
section given by M+−. This is illustrated in Fig. 8, which
shows the t-dependence of the various differential cross-
sections in log–log scale.
Third, in Fig. 9, we display the t-dependence of the

γ∗L,Tγ
∗
L,T→ ρ

0
Lρ
0
L differential cross-sections for Q = Q1 =

Q2 = 1GeV up to values of−tmuch larger than the photon
virtualities Qi, where t plays the role of the dominant hard
scale in our process. Of course, in such a kinematical region
the cross-sections are strongly suppressed in comparison
with the small t one. Nevertheless, Fig. 9 illustrates the ex-
pected fact that the hierarchy of cross-sections is different
in two regions: at large t, the γ∗Tγ

∗
T→ ρ

0
Lρ
0
L cross-section

dominates over the one of γ∗Lγ
∗
L→ ρ

0
Lρ
0
L, which is the dom-

inant cross-section at small t, since the virtual photons are
almost on shell with respect to the large scale given by t.
To conclude this subsection, we note that all the above

cross-sections are strongly peaked in the forward cone. The
phenomenological predictions obtained in the region of the
forward cone will practically dictate the general trends of
the integrated cross-sections. This fact is less dangerous
than for the real photon case, since the virtual photon is
not in the direction of the beam, and thus the outgoing ρ

Fig. 9. Differential cross-sections for the process γ∗L,Tγ
∗
L,T→

ρ0Lρ
0
L, up to asymptotically large t. The solid curve corres-

ponds to the γ∗Lγ
∗
L mode, the dotted one to the γ

∗
Lγ
∗
T mode, the

dashed and the dashed-dotted ones to the γ∗Tγ
∗
T′ modes with

respectively the same T = T′ and different T �= T′ transverse
polarizations, for Q1 =Q2 = 1GeV

mesons can be tagged. The only difficulty has to do with
the tagging of the outgoing lepton, since the cross-section
is dominated by small (hard) values of Q21,2. In this section
we did not modify cross-sections by taking into account
the virtual photon fluxes, which would amplify both the
dominance of the small Q2 region as well as the small yi
domain, characteristic for very forward outgoing leptons.
This is discussed in Sect. 5. In particular, it will be shown
that the differential cross-sections are experimentally vis-
ible and seem to be sufficient for the t-dependence to be
measured up to a few GeV2.
Note also that at this level of calculation there is no

s-dependence of the cross-section. It will appear after tak-
ing into account triggering effects and/or BFKL evolution.

4.3 Quark exchange contribution to the cross-section

The process (3) described above involves gluon exchanges
that dominate at high energies. However, at lower energy,
the process can be described by double quark exchange.
This was investigated in [25], in the case t= tmin. Figure 10
shows in particular the diagrams that contribute to the
amplitudeMH (see Fig. 2) for the process γ

∗
L(q1)γ

∗
L(q2)→

ρL(k1)ρL(k2). Using (12) and (13) of [25] together with the
asymptotical ρ0L distribution amplitude (37) one obtains
the scattering amplitude for the photons longitudinally
polarized:

Mqq̄
00 =−40π

2N
2
c −1

N2c

αsαemf
2
ρ

s

×

⎡

⎢
⎢
⎢
⎢
⎣
1+

(
1+

Q21
s
+2

Q21
s

ln
Q21
s

1−
Q21
s

)(
1+

Q22
s
+2

Q22
s

ln
Q22
s

1−
Q22
s

)

(
1−

Q21
s

)(
1−

Q22
s

)

⎤

⎥
⎥
⎥
⎥
⎦

(43)
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Fig. 10. Feynman diagrams contributing
toMH in the case of longitudinally polar-
ized virtual photons

and for the transversally polarized photons

Mqq̄
TT =M

qq̄
+++M

qq̄
−−

=−40π2
N2c −1

N2c

αsαemf
2
ρ

s

×

(
7
2 +

2
(
1+
Q21
s

)
ln
Q21
s

1−
Q21
s

)(
7
2 +

2
(
1+
Q22
s

)
ln
Q22
s

1−
Q22
s

)
− 14

(
1−

Q21
s

)(
1−

Q22
s

) .

(44)

In the large s limit, one respectively gets

Mqq̄
00 �−80π

2N
2
c −1

N2c

αsαemf
2
ρ

Q1Q2
(45)

and

Mqq̄
TT �−40π

2N
2
c −1

N2c

αsαemf
2
ρ

s

×

(
4 ln
Q21
s
ln
Q22
s
+14 ln

Q1Q2

s
+12

)

=−40π2
N2c −1

N2c

αsαemf
2
ρ

s

×

(
4 ln2

Q1Q2

s
+14 ln

Q1Q2

s
−4 ln2Q1/Q2+12

)
.

(46)

Other amplitudes vanish at t= tmin.
These expressions should be compared with the cor-

responding two gluon exchange contributions discussed in
the previous sections. The LL amplitude is almost constant
around t= tmin and given by (38).
The TT amplitude (29) behaves as

Mgg
TT �−ia

π

2
s
N2c −1

N2c
α2sαemf

2
ρ

|t− tmin|

Q31Q
3
2

, (47)

where the constant a= 253.5 is extracted from a numerical
fit.
Equations (43)–(47) confirm the well known fact that in

the Regge limit two gluon exchange dominates over dou-
ble quark exchange. Indeed, comparison of (45) and (46)
with (38) and (47) shows that the gluonic contributions are
proportional to s (in agreement with the usual counting
rule sΣσi−N+1, where N is the number of t-channel ex-
changed particles of spin σi). In the case of longitudinally
polarized photons, which does not vanish at tmin, and for
the same photon virtualities Q21 =Q

2
2 =Q

2, let us consider
the ratio

RLL =
Mqq̄
00

Mgg
00

=
32(Q2u+Q

2
d)

28ζ(3)−24

Q2

sαs
. (48)

For a typical value of Q2 = 1GeV2, as soon as s (� sγ∗γ∗)
is higher than 4 GeV2, this ratio is larger than unity, which
at first sight seems to be always the case for ILC. Equa-
tion (38) would thus completely dominate with respect
to (43), by several orders of magnitudes. In fact, sγ∗γ∗ can
reach such a low value as 4 GeV2, because of the outgo-
ing energy carried by the outgoing leptons and the strong
peak of the Weizsäcker–Williams fluxes at small γ∗ ener-
gies. We discuss this effect in Sect. 5.3 at the level of the
e+e− process, after performing the phase-space integration
of the differential cross-section at tmin. It will be shown
that nevertheless the quark contribution is really negligible
in almost all the ILC phase space.
In the case of the two gluon contributionwith transverse

virtual photons, (47), which vanishes at t = tmin, its dom-
inance over the corresponding quark contribution (44) ap-
pears very rapidly when |t− tmin| starts to increase, and it
persists in the whole essential region of the phase space (re-
member that (47) is peaked at t− tmin = k0.01GeV2, where
k is of order 1–10). This dominance will also be discussed in
more detail in Sect. 5.3 at the level of the e+e− process.

5 Non-forward Born order cross-section
for e+e�→ e+e�ρ0Lρ

0
L

5.1 Kinematical cuts for the phase-space integration

Our purpose is now to evaluate the cross-section of the pro-
cess e+e−→ e+e−ρ0Lρ

0
L in the planned experimental condi-

tions of the International Linear Collider project [44]. For
the detector part, we chose to focus on the Large Detector
Concept [45], and we use the potential of the very forward
region accessible through the electromagnetic calorimeter
BeamCal, which may be installed around the beampipe at
3.65m from the interaction point. The LDC is illustrated in
Fig. 11.
The cross-section that takes into account all the kine-

matical constraints, which are explained below, is given by

dσe
+e−→e+e−ρLρL

dt
=

∫ Q21max

Q21min

dQ21

∫ Q22max

Q22min

dQ22

∫ ymax

ε

dy1

×

∫ ymax

Q1Q2
sy1

dy2
dσe

+e−→e+e−ρLρL

dtdy1dy2dQ21dQ
2
2

,

(49)
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Fig. 11. The LDC project, with the BeamCal forward electro-
magnetic calorimeter

with Q1min = 1GeV, Q1max = 4GeV, ε = 10
−6 and

ymax = 0.6.
The cross-section (49) can be evaluated combining

the cross-section formulae (5) and (28) and the results of
Sect. 4.2 for the helicity scattering amplitudes.
The important feature of the formula (49) is that the

dominant contribution for the e+e−→ e+e−ρ0Lρ
0
L process

is strongly peaked at low Qi. The integration over Qi
and yi is peaked in the low yi and Qi phase-space re-
gion due to the presence in (5) of 1/(yiQ

2
i ) factors coming

from the Weizsäcker–Williams fluxes and thus amplifies
this effect. We show below that this dominant part of the
phase space is accessible experimentally using the Beam-
Cal calorimeter.
The integration domain in (49) is fixed by the follow-

ing considerations. In the laboratory frame, which is also
the center of mass system (CMS) for a linear collider, the
standard expression for the momentum fractions with re-
spect to the incoming leptons and for the virtualities of the
bremsstrahlung photons are, respectively, given by

yi =
E−E′i cos

2(θi/2)

E
, Q2i = 4EE

′
i sin

2(θi/2) , (50)

where E is the energy of the beam, while E′i and θi are,
respectively, the energy and the scattering angle of the out-
going leptons. At ILC, the foreseen CMS energy is

√
s=

2E = 500GeV. The experimental constraint coming from
the minimal detection angle θmin around the beampipe is
given by θmax = π− θmin > θi > θmin and leads to the fol-
lowing constraint on yi:

yi > f(Qi) = 1−
Q2i

s tan2(θmin/2)
, (51)

where the constraint on the upper bound of yi coming from
θmax is completely negligible at this CMS energy.
The condition on the energy of the scattered lepton

Emax >E
′
i >Emin results in

yimax = 1−
Emin

E
> yi > 1−

Emax

E
. (52)

Moreover, we impose sγ∗γ∗ = y1y2s > cQ1Q2 (where c is
an arbitrary constant of the order 1), which is required by
the Regge kinematics for which the impact representation
is valid. In Sect. 5.3 we show that this constant c can be
adjusted to choose bins of data for which also in the case
of e+e− scattering the contribution with quark exchanges
(discussed in Sect. 4.3) is completely negligible.
We arbitrarily choose Qi to be bigger than 1 GeV as

it provides the hard scale of the process, which legiti-
mates the use of perturbation theory. Qimax will be fixed
to 4 GeV, since the various amplitudes involved are com-
pletely negligible for higher values of the virtualities Qi
(see Sect. 4.2). The constraints on yimin discussed so far are
summarized by the conditions

y1min =max

(
f(Q1), 1−

Emax

E

)
and

y2min =max

(
f(Q2), 1−

Emax

E
,
cQ1Q2

sy1

)
. (53)

Further simplifications of the conditions (53) can be done
by taking into account that the only condition on the max-
imal value of energy detection of the scattered leptons
comes from kinematics, i.e. Emax = E, and accounting for
some specific features of the planned detector.
The BeamCal calorimeter in the very forward region in

principle allows one to detect particles down to 4mrad.3

More precisely, it measures an energy deposit for an angle
between 4mrad and 26mrad. But this detector is also pol-
luted by photon beamstrahlung, specially for very small
angles (see Fig. 12). We assume a non-ambiguous iden-
tification for particles whose energies are bigger than
100GeV. More precisely, the efficiency of detection of an
electron depends on its energy and becomes less ambigu-
ous when the energy increases. It is above 70% in the
part of the phase space that dominates the cross-section
(small yi, corresponding to E

′
i �Ei). A precise evaluation

of this efficiency would require to set up a Monte Carlo
simulation for the beamstrahlung contribution, which is
beyond the scope of this paper. This sets themaximal value
of yi to yimax = 1−

Emin
E = 0.6 with Emin = 100GeV and

E = 250GeV.
Such a big value of Emin can be considered as surpris-

ingly high and could lead to a strong reduction of the
allowed phase space. In principle, one could enlarge the
phase space by taking into account particles whose ener-
gies E′i are between 100GeV and 20GeV with angles θi
bigger than 10mrad (see Fig. 12), but the contribution
of this domain is negligible (see Fig. 13), since the lower
bound of yi (see (53)) prevents us from reaching the small
values of yi and Qi that give the dominant contribution
to the cross-section. We safely neglect the contribution of
this region of phase space and assume in the following that
Emin = 100GeV and θmin = 4mrad.

3 Note that in order to get access to any inclusive [17] or
diffractive high s processes, one needs very small θmin. To reach
values of θmin of a few mrads represents an important techno-
logical step, which was not feasible a few years ago.
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Fig. 12. Energy deposit in GeV in each cell of the BeamCal
detector due to beamstrahlung

Fig. 13. y1 integration domain for θmin = 10mrad, Emin =
20GeV and Emax = 100 GeV

Thus, with θmin = 4mrad and
√
s= 500GeV, we have

s tan2(θmin/2) = 1GeV
2, which means that f(Q) ≤ 0 for

Q2 ≥ 1 GeV2. The relations (53), with Emax =E, reduce to
only one condition y2min =

Q1Q2
sy1
. This has to be supple-

mented numerically with the condition y1min = ε, where ε
is a numerical cut-off: although, because of the Regge limit
condition, we have y1 >

Q1Q2
sy2

≥ Q1minQ2min
sy2max

= 6.6×10−6

which thus provides a natural lower cut-off for y1, never-
theless we choose ε = 10−6 so that it is smaller than the
smallest reachable value of y1 but still non-zero. This cut-
off has no practical effect, except for avoiding numerical
instabilities in the integration code.
The above discussion justifies the various cuts in for-

mula (49).

5.2 Background in the detector

BeamCal is an electromagnetic calorimeter that cannot
distinguish charges of particles. Thus, it is important to
check that the cross-sections of any other processes that
could lead to final states that can be misidentified with
the final state of the process e+e−→ e+e−ρ0Lρ

0
L are sup-

pressed. Indeed, the final state of the process e+e− →

Fig. 14. Example of Born order diagrams for the process
e+e−→ ρ0Lρ

0
L (a) and for the e

+e−→ γγρ0Lρ
0
L process (b)

γγρ0Lρ
0
L, with photons of the same energy deposit in detec-

tor as outgoing leptons, cannot be distinguished with the
final state of e+e−→ e+e−ρ0Lρ

0
L.

We shall argue that the process e+e−→ γγρ0Lρ
0
L leads

to a cross-section that is negligible at ILC. Let us start with
the process e+e−→ ρ0Lρ

0
L illustrated in Fig. 14a, studied

in [46, 47].
Its differential cross-section behaves typically like

dσ

dt
∝
α4emf

4
ρ

s2m4ρ
, (54)

with the virtualities of the photons propagators equal to
m2ρ. More accurate expressions can be found in [47], if one
identifies gV γ = fρmρ.
Now, when considering the competitor process e+e−→

γγρ0Lρ
0
L, that is, adding two additional bremsstrahlung

photons as in Fig. 14b, we get

dσe
+e−→γγρLρL

dtdy1dy2dQ21dQ
2
2

/ dσe
+e−→e+e−ρLρL

dtdy1dy2dQ21dQ
2
2

�
α2emQ

4
1Q
4
2

α4ss
2m4ρ

,

(55)

which is suppressed at ILC energies, and it would be of
comparable order of magnitude only for colliders with
CMS energy of the order of a few GeV.

5.3 Results for cross-section

The cross-sections dσe
+e−→e+e−ρLρL

dt are displayed in
Fig. 15. They are shown as functions of t for different po-
larizations and plotted after integrating the differential
cross-section in (49) over the phase space considered pre-
viously. We made the following assumptions: we choose
the QCD coupling constant to be αs(

√
Q1Q2) running

at three loops, the parameter c = 1 which enters in the
Regge limit condition and the cm energy

√
s = 500GeV.

Figure 15 shows for e+e− scattering the same differential
cross-sections as Fig. 5, but related to different photon he-
licities. We see that the shapes of the corresponding curves
are similar, although they lead to quite different values
of the cross-sections. The cross-sections corresponding to
photons with at least one transverse polarization vanish as



104 M. Segond et al.: Diffractive production of two ρ0L mesons in e
+e− collisions

Fig. 15. Cross-sections for e+e−→ e+e−ρ0Lρ
0
L process. Start-

ing from above, we display the cross-sections corresponding to
the γ∗Lγ

∗
L mode, to the γ

∗
Lγ
∗
T modes, to the γ

∗
Tγ
∗
T′ modes with

different T �= T′ and finally to the γ∗Tγ
∗
T′ modes with the same

T = T′

Fig. 16. Cross-sections for e+e−→ e+e−ρ0Lρ
0
L process, in log-

log scale. Starting from above, we display the cross-sections
corresponding to the γ∗Lγ

∗
L mode, to the γ

∗
Lγ
∗
T modes, to the

γ∗Tγ
∗
T′ modes with different T �= T

′ and finally to the γ∗Tγ
∗
T′

modes with the same T = T′

in the γ∗γ∗ case at t= tmin (cf. Sect. 4.2). Similarly, each
of them has a maximum in the very small t region. These
maxima are shown more accurately on the log–log plot in
Fig. 16.
At this point one technical remark is in order. By look-

ing into the upper plot in Fig. 16 related to theM00 am-
plitude, one sees that the points corresponding to non-
zero |t− tmin| approach smoothly the point on the axis
|t− tmin|= 0. This point |t− tmin|= 0 is of special inter-
est, because it gives the maximum of the total cross-section
(since the transverse polarization case vanishes at tmin)
and then practically dictates the trend of the total cross-
section, which is strongly peaked in the forward direction
(for the longitudinal case) and strongly decreases with t
(for all polarizations), as shown already at the level of the
γ∗γ∗ cross-sections in Sect. 4.2. Due to numerical instabili-
ties, the differential cross-section at |t− tmin|= 0 must be
evaluated in a different way than those for |t− tmin| = 0,
i.e. by the use of (38), in which the integration over zi
was already done in the analytic way. Since (38) involves
several polylogarithmic functions, its structure of cuts is

quite inconvenient for further numerical integration over
the variables yi andQi. In order to overcome this technical
problem it is useful to rewrite (38) by the use of the Euler
identity [48] in the form

M00 =−is
N2c −1

N2c
α2sαemf

2
ρ

9π2

2

1

Q21Q
2
2

[
6

(
R+

1

R

)
ln2R

+12

(
R−

1

R

)
lnR+12

(
R+

1

R

)

+

(
3R2+2+

3

R2

)((
π2

6
−Li2(1−R)

)
lnR

− ln(R+1) ln2R−2Li2(−R) lnR+Li2(R) lnR

+2Li3(−R)−2Li3(R))] , (56)

since now the imaginary terms only come from Li2(R) and
Li3(R) along their cuts, which cancel among each other an-
alytically. Therefore, one can safely use their real part in
a numerical fortran code as defined in standard packages.
The ILC collider is expected to run at a CMS nom-

inal energy of 500GeV, though it might be extended in
order to cover a range between 200GeV and 1 TeV. Be-
cause of this possibility, we below discuss how the change of
the energy in CMS influences our predictions for the cross-
sections measured in the same BeamCal detector. Further-
more, we discuss the effects of our various assumptions on

the cross-section dσ
e+e−→e+e−ρLρL

dt at the point tmin, and
consequently on the behavior of the total cross-section.
Figure 17 shows the cross-section at tmin as a function

of the CMS energy
√
s for different choices of the strong

coupling constant αs. To see the sensitivity of our predic-
tions to these choices, we plot the cross-section at tmin in
two cases: the blue curve corresponds to αs(

√
Q1Q2) run-

ning at one loop and the red one to αs(
√
Q1Q2) running

at three loops. The curves in Fig. 17 are very close to each
other, which leads to a small uncertainty on the total cross-
section as we will see in the following.
The shapes of plots in Fig. 17 distinguish two different

domains: if the planned CMS energy range
√
s is lower than

500GeV, the function f(Qi) (cf. (51)) appearing as a con-
straint on the minimum value of yi in the phase space in-
tegration domain does not play any role at θmin = 4mrad.
Thus the cross-section increases with

√
s between 200 and

500GeV. Because of the condition we assumed on the
minimal value of the energies of the scattered leptons in
Sect. 5.1, the yi integration domain becomes very narrow
(cf. (52)) when

√
s goes to 200GeV and leads to a strong

decreasing of the cross-section at this CMS energy. Note
that if

√
s becomes bigger than 500GeV, f(Qi) will cut the

small yi region (which contributes mainly because of the
Weizsäcker–Williams photons fluxes) when

√
s increases.

Thus the cross-section falls down between 500GeV and
1 TeV. This is due to the limitation caused by the mini-
mal detection angle offered by the BeamCal calorimeter,
which is thus optimal for our process when

√
s= 500GeV.

This effect on f(Qi) could be compensated if one could
increase the value of Qi, but this would be completely sup-
pressed because of the strong decreasing of the amplitude
with Qi. The above discussion leads also to the conclusion
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Fig. 17. Cross-sections for e+e−→ e+e−ρ0Lρ
0
L at t= tmin for

different αs: the blue and red curves for αs running respectively
at one and three loops, with c= 1

Fig. 18. Cross-sections for e+e−→ e+e−ρ0Lρ
0
L at t= tmin for

different values of the parameter c: the red [black ] curves cor-
respond to c= 1, the green [dark grey ] curves to c= 2 and and
the yellow [light grey ] curves to c= 3. For each value of c, by de-
creasing order the curves correspond to gluon exchange, quark
exchange with longitudinal virtual photons and quark exchange
with transverse virtual photons

that, although the Born order cross-sections do not depend
on s, the triggering effects introduce an s-dependence of
the measured cross-sections.
Figure 18 shows the cross-section at tmin for different

values of the parameter c, which enters in the Regge limit
condition sγ∗γ∗ = y1y2s > cQ1Q2. The value of the param-
eter c controls the dominance of gluonic contributions to
the scattering amplitude: the increase of c should lead to
suppression of quark exchanges. To see that we display
the quark contribution in the same bins, we use the usual
phase space for the process e+e−→ e+e−ρ0Lρ

0
L (cf. (5))

with the expressions of the amplitudes (43) and (44),
and we perform their numerical integration on yi and Qi
with the same cuts as in the two gluon exchange process
(cf. Sect. 5.1). For each value of c we plot the three curves
corresponding to the two gluon exchange process and the
quark exchange processes with longitudinal and transverse
virtual photons.
A technical remark is in order when performing this in-

tegration numerically. Equation (44) is not divergent when

Q2i → s, because this limit is only valid if s(1−Q
2
1/s)×

(1−Q22/s) is finite and positive since this term corresponds
in our notation to the CMS energy of the virtual photons.
In order to avoid numerical instabilities we add the condi-
tion y1y2s > Q

2
1, Q

2
2 to the Regge limit condition. We can

check that this supplementary constraint does not change
our results for the other contributions, namely for pro-
cesses with two gluon exchange and quark exchange with
longitudinal virtual photons.
As expected, the quark contribution is suppressed when

increasing c and becomes completely negligible as soon as c
exceeds 2. The whole discussion above concerned the case
t= tmin, which determines the general trend of the cross-
section in the non-forward case. Because of that, we hope
that the above conclusions are also valid at the level of the
cross-section integrated over t. Thus, we omit below the
quark exchanges.
We finally obtain the following results for the total

cross-section integrated over t. We shall show three differ-
ent predictions, which differ by the choice of the definition
of the coupling constant and by the choice of the value of
the parameter c controlling the gluon dominance. First we
choose αs(

√
Q1Q2) running at three loops, the constant

c= 1, the CMS energy
√
s= 500GeV and we obtain (up to

numerical uncertainties)

σLL = 32.4 fb ,

σLT = 1.5 fb ,

σTT = 0.2 fb , (57)

and then

σTotal = 34.1 fb . (58)

With a nominal integrated luminosity of 125 fb−1, this will
yield 4.26×103 events per year.
Secondly, with the choice of αs(

√
Q1Q2) running at

one loop, the constant c = 1 and the CMS energy
√
s =

.500GeV, we obtain

σLL = 33.9 fb ,

σLT = 1.5 fb ,

σTT = 0.2 fb , (59)

which leads to

σTotal = 35.6 fb . (60)

As expected, we see that the transition from three to one
loop changes the total cross-section very little. This result
will yield 4.45×103 events per year with a nominal inte-
grated luminosity of 125 fb−1.
In the third choice, we choose αs(

√
Q1Q2) running at

three loops, the same CMS energy
√
s= 500GeV and the

constant c= 2 (for which as previously discussed quark ex-
changes are completely negligible) and we get

σLL = 28.1 fb ,

σLT = 1.3 fb ,

σTT = 0.2 fb , (61)
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which imply

σTotal = 29.6 fb . (62)

This result will yield 3.7×103 events per year with a nom-
inal integrated luminosity of 125 fb−1.
Finally, we also consider the same assumptions as the

previous ones except for the value of the constant c, which
is now set to c = 10 in order to consider a more drastic
Regge limit condition, and we obtain

σLL = 19.3 fb ,

σLT = 0.9 fb ,

σTT = 0.11 fb , (63)

which leads to

σTotal = 20.3 fb . (64)

This result will yield 2.5×103 events per year with a nom-
inal integrated luminosity of 125 fb−1. Thus, this shows
that the precise way one implements the restriction of the
kinematical phase space to the domain of applicability of
the impact representation does not dramatically change
the number of events.
The whole prediction above was obtained using the

asymptotical DA. In order to see the sensitivity of this as-
sumption on our results, we also do the calculation using
the DA (37) within different models. The choice of the DA
of [49] with a2 =−0.1 and a4 = 0 gives 4.2×103 events per
year, while the choice of the DA of [50] with a2 = 0.05 and
a4 = 0 gives 4.3×103 events per year.
In summary of this part we see that our predictions are

quite stable when changing the main parameters charac-
terizing the theoretical uncertainties of our approach.
The obvious question that appears now is how our

predictions summarized by (58)–(62) will change by the
inclusion of the BFKL resummation effects. Generally
BFKL evolution strongly increases the values of the cross-
sections, which means that usually the results obtained in
Born approximation can be considered as a lower limit of
the cross-sections for ρ-meson pair production with com-
plete BFKL evolution taken into account. Although the
complete analysis of the BFKL evolution for our process is
beyond the scope of the present paper, we would like to fin-
ish this section with a few remarks on the possible effects
caused by the BFKL evolution.
We consider below only the point t = tmin and we re-

strict ourselves to the leading order BFKL evolution.4 Of
course, such an estimate should be taken with great cau-
tion, since it is well known that LO BFKL overestimates
the magnitude of corrections.
In Fig. 19 we show the corresponding cross-section at

tmin as a function of
√
s, for different choices of αs: we con-

sidered αs running at one and three loops (red curves) as in
the previous discussion for the two gluon exchange, and we
also used a fixed value of αs (green curve) corresponding to

4 Note that related studies with a hard scale provided by t
and not by Q2 were performed in [51, 52].

Fig. 19. Cross-sections for e+e−→ e+e−ρ0Lρ
0
L with LO BFKL

evolution at t= tmin for different αs : the upper and lower red
curves for αs running respectively at one and three loops and
the green one (the middle curve) for αs = 0.46

the three loop running coupling constant at a typical vir-
tuality of Q= 1.1 GeV. We have used the expression of the
BFKL amplitude [23, 24] for the forward case in the saddle
point approximation, namely

A(s, t= tmin, Q1, Q2)

∼ isπ5
√
π
9
(
N2c −1

)

4N2c

α2sαemf
2
ρ

Q21Q
2
2

e4 ln 2ᾱsY
√
14ᾱsζ(3)Y

× exp

(
−

ln2R

14ᾱsζ(3)Y

)
, (65)

with the rapidity Y = ln
(
c′sy1y2
Q1Q2

)
, ᾱs =

Nc
π αs(

√
Q1Q2) and

R= Q1Q2 . The plots in Fig. 19 are obtained by assuming that
the constant c′ in (65), which at LO is arbitrary and of
order 1, is chosen to be 1. The factor exp(4 ln 2ᾱsY ) ex-
plains the enhancement of the sensitivity to the choice of
αs compared to the one in the Born two gluon exchange
case, since 4 ln 2Y takes big values for the ILC rapidities Y .
For the same reasons as discussed earlier in this section, the
function f(Qi) does not appear for

√
s lower than 500GeV;

the LO BFKL cross-section then grows exponentially with
s in this domain. The effect of f(Q) starting from 500GeV
gives an inflection point of the curves and a maximum be-
yond 500GeV; then the curves decrease until 1 TeV.
The effect of varying the parameter c′ in the BFKL pre-

diction is illustrated in Fig. 20. As expected, it has a strong
effect on the order of magnitude of the differential cross-
section, since the rapidity is very high and thus leads to
a large value of the factor exp(4 ln 2ᾱsY ), which is highly
sensitive to the precise definition of the rapidity.
Comparing the order of magnitude of the Born cross-

section (Figs. 17 and 18) with cross-sections provided by
the LO BFKL evolution (Figs. 19 and 20), one could be
astonished by the fact that they differ by several orders
of magnitudes. From previous studies at the level of
γ∗γ∗ [23, 24, 38], the NLO contribution is known to be be-
tween the LO and the Born order cross-section. Thus, at
the level of the e+e− process, such a large magnitude for
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Fig. 20. LO BFKL cross-section for e+e− → e+e−ρ0Lρ
0
L at

t = tmin for different values of the parameter c
′: by decreasing

order, the curves correspond to c′ = 2, c′ = 1 and c′ = 0.5. c is
fixed to be equal to 1

the LO BFKL cross-section will be suppressed at NLO,
leading to a more realistic estimate.
The above discussion of BFKL enhancement was re-

stricted to the forward case, t= tmin. In the non-forward
case, the phase-space region with small t values dominates
the cross-sections. The obtained hierarchy between cross-
sections in Born approximation for different photon po-
larizations will presumably still be valid when including
BFKL evolution at any order of resummation (LO, NLO,
etc.). Indeed, the argument given in Sect. 4.2 for the Born
order, and on which this hierarchy is based, only relies on
the s-channel helicity conservation. Technically, it is based
on the impact representation, which is valid beyond Born
and/or LO approximation.
The comparison of Figs. 17 and 18 with Figs. 19 and 20

leads to the conclusions that the BFKL evolution changes
the shape of the cross-section: when increasing

√
s from

500GeV to 1 TeV, the two gluon exchange cross-section
will fall down, while with the BFKL resummation ef-
fects, the cross-section should more or less be stable, with
a high number of events still to be observed for these CMS
energies.

6 Conclusion

The present study should be considered as a continuation
of our previous investigations [19–24] for the production
of two ρ0L mesons in the scattering of two longitudinally
polarized virtual photons. The diffractive production of
a meson pair is one of the gold plated processes that per-
mit clean studies of the BFKL dynamics at ILC. Our main
motivation in the present work was to estimate, in the
Born approximation, the cross-section for the production
of ρ0L-meson pairs in the e

+e− collisions occurring in the
kinematical conditions of the future ILC. For this aim, we
first calculated contributions, missing up to now, that in-
volve the helicity amplitudes with transversally polarized
virtual photons. This was done in a mostly analytic way,
by the use of techniques developed in [22]. Having done so,

we calculated the cross-section for the electroproduction
of ρ0L-meson pairs that takes into account the kinematical
cuts imposed by the LDC design project for the BeamCal
detector. By assuming a nominal value for the integrated
luminosity, we predict (in the numerical analysis of cross-
sections) a production of at least 4×103 meson pairs per
year, a value which is sufficiently large to ensure a reliable
data analysis.
We discussed a possible background process in the

BeamCal detector that can identify in a misleading way an
outgoing lepton with a photon. We predict that the cross-
section for such a background process is negligibly small at
ILC energies.
Finally, we discussed theoretical uncertainties of the es-

timates obtained. There are two main sources of them. The
first one is related to the assumptions we have made to
characterize the Regge limit and the particular role played
by the parameter c; we also observe a sensitivity of our re-
sults on the choice of the running coupling constant.
The second source of theoretical uncertainties of our es-

timates is related to taking into account the effects of the
BFKL evolution. Generally, inclusion of the BFKL evo-
lution significantly increases the cross-section, as one sees
from comparison of Fig. 17 with Fig. 19, obtained within
the LO BFKL approach. On the other hand, it is known
that this increase of predictions for the cross-sections is
smaller if the BFKL evolution is considered at the next-to-
leading order. Because of this we can safely say that our
predictions should be considered as a lower limit for the
predictions that are obtained by taking into account BFKL
effects at NLO.We hope to consider this issue in our future
publications.
In principle, the same techniques can be applied for

the description of processes involving other final states,
both with positive charge parity exchange in t-channel,
e.g. J/Ψ pairs, as well as negative charge parity,
e.g. γ∗γ∗→ ηcηc [53].
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Appendix

In this appendix we collect the analytical expressions
of the coefficients a(r;Q1, Q2; z1, z2), b(r;Q1, Q2; z1, z2)
and f(r;Q1, Q2; z1, z2), as well as all the generic integrals
that appear in the computation of the Born amplitude in
Sect. 4. The coefficients a, b and f can be expressed as
combinations of several generic integrals:

a(r;Q1, Q2; z1, z2)

=
1

2
[I3µ1µ2(z1, z2)+ I3µ1µ2(z̄1, z̄2)

− I3µ1µ2(z̄1, z2)− I3µ1µ2(z1, z̄2)]
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−
r2

2
[I4µ1µ2(z1, z2)− I4µ1µ2(z̄1, z2)]

−
1

r2
[
Jcµ1µ2(z1, z̄2)+J

c
µ1µ2
(z̄1, z2)

−Jcµ1µ2(z̄1, z̄2)−J
c
µ1µ2
(z1, z2)

]
, (A.1)

b(r;Q1, Q2; z1, z2)

=

[
z1z2(

z21r
2+µ21

)(
z22r

2+µ22
) −

z1z̄2(
z21r

2+µ21
)(
z̄22r

2+µ22
)

−
z̄1z2(

z̄21r
2+µ21

)(
z22r

2+µ22
)+

z̄1z̄2(
z̄21r

2+µ21
)(
z̄22r

2+µ22
)

]

r2I2

+

([
z1

z21r
2+µ21

−
z̄1

z̄21r
2+µ21

]

×
[
I2µ2(z̄2)− I2µ2(z2)+ r

2(z̄2− z2)I3µ2(z2)
]
+(1↔ 2)

)

+ r2
[
1

2
+2z1z2− (z1+ z2)

]

× [I4µ1µ2(z1, z2)+ I4µ1µ2(z1, z̄2)]

+

[
−
1

2
+(z1+ z2)

]
I3µ1µ2(z1, z2)

+

[
3

2
− (z1+ z2)

]
I3µ1µ2(z̄1, z̄2)

+

[
z1− z2−

1

2

]
I3µ1µ2(z̄1, z2)

+

[
z2− z1−

1

2

]
I3µ1µ2(z1, z̄2)]

+
1

r2
[
Jcµ1µ2(z1, z̄2)+J

c
µ1µ2
(z̄1, z2)

−Jcµ1µ2(z̄1, z̄2)−J
c
µ1µ2
(z1, z2)

]
, (A.2)

f(r;Q1, Q2; z1, z2)

=

[
1

z21r
2+µ21

+
1

z̄21r
2+µ21

][
z2

z22r
2+µ22

−
z̄2

z̄22r
2+µ22

]
I2

+2

[
z̄2

z̄22r
2+µ22

−
z2

z22r
2+µ22

]
I3µ1(z1)

+ (z̄2− z2)

[
1

z21r
2+µ21

+
1

z̄21r
2+µ22

]
I3µ2(z2)

+ (z2− z̄2)[I4µ1µ2(z1, z2)+ I4µ1µ2(z̄1, z2)]

+
1

r2

[
1

z21r
2+µ21

+
1

z̄21r
2+µ21

]
[I2µ2(z̄2)− I2µ2(z2)]

+
1

r2
[I3µ1µ2(z̄1, z2)− I3µ1µ2(z1, z̄2)

+ I3µ1µ2(z1, z2)− I3µ1µ2(z̄1, z̄2)] , (A.3)

part of which are divergent integrals:

I2 =

∫
ddk

k2(k− r)2
, (A.4)

I2m(a) =

∫
ddk

k2
(
(k−ar)2+m2

) , (A.5)

I3m(a) =

∫
ddk

k2(k− r)2
(
(k−ar)2+m2

) , (A.6)

I3mamb(a, b) =

∫
ddk

k2
(
(k−ar)2+m2a

)(
(k− br)2+m2b

) ,

(A.7)

I4mamb(a, b)

=

∫
ddk

k2(k− r)2
(
(k−ar)2+m2a

)(
(k− br)2+m2b

) ,

(A.8)

and some of them are finite:

J2mamb(a, b) =

∫
ddk

(
(k−ar)2+m2a

)(
(k− br)2+m2b

) ,

(A.9)

Jcmamb(a, b) =

∫
ddk(k · r)

k2
(
(k−ar)2+m2a

)(
(k− br)2+m2b

) ,

(A.10)

Kmamb(a, b) =

∫
ddk

k2

[
1

(
b2r2+m2b

)[
(k−ar)2+m2a

]

+
1

(
a2r2+m2a

)[
(k− br)2+m2b

]

−
2r2

[
k2+(r−k)2

](
a2r2+m2a

)(
b2r2+m2b

)
]
,

(A.11)

Lmamb(a, b) =

∫
ddk

k2

[
1

(
a2r2+m2a

)[
(k− br)2+m2b

]

−
r2

[
k2+(r−k)2

](
a2r2+m2a

)(
b2r2+m2b

)
]
,

(A.12)

Nmamb(a, b) =

∫
ddk

k2

[
1

(
a2r2+m2a

)[
(k− br)2+m2b

]

−
1

(
b2r2+m2b

)[
(k−ar)2+m2a

]
]
, (A.13)

J3µ(a) =

∫
d2k

k2(k− r)2

[
1

(k− ra)2+µ2
−

1

a2r2+µ2

+(a↔ ā)

]
, (A.14)

J4µ1µ2(z1, z2) =

∫
d2k

k2(k− r)2

×

[
1

(
(k− rz1)2+µ21

)(
(k− rz2)2+µ22

)

−
1

(
z21r

2+µ21
)(
z22r

2+µ22
) +(z↔ z̄)

]
.

(A.15)

Although the divergent integrals (A.4)–(A.8) enter
(A.1)–(A.3), the coefficients a(r;Q1, Q2; z1, z2),
b(r;Q1, Q2; z1, z2) and f(r;Q1, Q2; z1, z2) are finite expres-
sions. To see this requires tracing of the cancellation of
divergencies within each of these coefficients, which in
principle can be done within a dimensional regularization
scheme. Unfortunately, this procedure is not always prac-
tically feasible, especially for the integrals I3m, I3m1m2 or
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I4m1m2 , which apart of massless propagators contain also
massive propagators. These integrals can be rewritten in
terms of the simpler, although divergent integrals I2 and
I2m as

I3m1m2(z1, z2)

=−
1

2

(
1

z21r
2+m21

+
1

z22r
2+m22

)
J2m1m2(z1, z2)

+

(
z1

z21r
2+m21

+
z2

z22r
2+m22

)
Jcm1m2(z1, z2)

+
1

2
(
z22r

2+m22
)I2m1(z1)+

1

2
(
z21r

2+m21
)I2m2(z2) ,

(A.16)

I4m1m2(z1, z2)

=
1

2

(
1

(
z21r

2+m21
)(
z22r

2+m22
)

+
1

(
z̄21r

2+m21
)(
z̄22r

2+m22
)
)
I2+

1

2
J4m1m2(z1, z2) ,

(A.17)

I3m(z)

=
1

2

(
1

z2r2+m2
+

1

z̄2r2+m2

)
I2+

1

2
J3m(z) . (A.18)

Divergent integrals like I2 and I2m or finite ones like J
c
m1m2

and J2m1m2 are directly computed by standard Feynman
techniques.
The finite integrals J4m1m2 and J3m are calculated

by the use of the change of variables defined by the in-
verse conformal transformation applied to the momenta
and other dimensional parameters of integrals [18]. Such
a change of variables applied to the two dimensional, UV
and IR finite integrals results in a reduction of the number
of massless propagators, a well known property from the
studies of conformal field theories in coordinate space [54].
As a result, we get the following expressions for the co-

efficients a(r;Q1, Q2; z1, z2), b(r;Q1, Q2; z1, z2) and
f(r;Q1, Q2; z1, z2), which involve only explicitly conver-
gent integrals:

a(r, z1, z2)

=

(
1

2

[
z1(

z21r
2+µ21

) +
z2(

z22r
2+µ22

) +
1

r2

]

Jcµ1µ2(z1, z2)

+
1

4
K(z1, z2)+ (z1↔ z̄1, z2↔ z̄2)

−(z1↔ z̄1)− (z2↔ z̄2)

)

+
r2

4
[J4µ1µ2(z̄1, z2)−J4µ1µ2(z1, z2)]

+
1

4

[
1

(
z21r

2+µ21
) +

1
(
z22r

2+µ22
)

+
1

(
z̄21r

2+µ21
) +

1
(
z̄22r

2+µ22
)

]

× [J2µ1µ2(z̄1, z2)−J2µ1µ2(z1, z2)] , (A.19)

b(r, z1, z2)

=
r2

2

[
z1

z21r
2+µ21

−
z̄1

z̄21r
2+µ21

]
[z̄2− z2]J3µ2(z2)+ (1↔ 2)

+ r2
[
1

2
+2z1z2− (z1+ z2)

]

× [J4µ1µ2(z1, z2)+J4µ1µ2(z1, z̄2)]

+

[
−
1

2
+ z1+ z2

][(
z1

z21r
2+µ21

+
z2

z22r
2+µ22

)
Jcµ1µ2(z1, z2)

−
1

2

(
1

z21r
2+µ21

+
1

z22r
2+µ22

)
J2µ1µ2(z1, z2)

]

+

[
3

2
− (z1+ z2)

][(
z̄1

z̄21r
2+µ21

+
z̄2

z̄22r
2+µ22

)
Jcµ1µ2(z̄1, z̄2)

−
1

2

(
1

z̄21r
2+µ21

+
1

z̄22r
2+µ22

)
J2µ1µ2(z̄1, z̄2)

]

+

[
z1− z2−

1

2

][(
z̄1

z̄21r
2+µ21

+
z2

z22r
2+µ22

)
Jcµ1µ2(z̄1, z2)

−
1

2

(
1

z̄21r
2+µ21

+
1

z22r
2+µ22

)
J2µ1µ2(z̄1, z2)

]

+

[
z2− z1−

1

2

][(
z1

z21r
2+µ21

+
z̄2

z̄22r
2+µ22

)
Jcµ1µ2(z1, z̄2)

−
1

2

(
1

z21r
2+µ21

+
1

z̄22r
2+µ22

)
J2µ1µ2(z1, z̄2)

]

+
1

r2

[
Jcµ1µ2(z1, z̄2)+J

c
µ1µ2
(z̄1, z2)

−Jcµ1µ2(z̄1, z̄2)−J
c
µ1µ2
(z1, z2)

]

+Lµ1µ2(z̄1, z2)+Lµ1µ2(z̄2, z1)

−
1

4
[Kµ1µ2(z1, z2)+K(z̄1, z̄2)

+Kµ1µ2(z1, z̄2)+Kµ1µ2(z̄1, z2)]

+
z2− z1
2
[Nµ1µ2(z1, z2)+Nµ1µ2(z̄2, z̄1)]

+
z1+ z2
2
[Nµ1µ2(z1, z̄2)+Nµ1µ2(z2, z̄1)] , (A.20)

f(r, z1, z2)

=

[
z̄2

z̄22r
2+µ22

−
z2

z22r
2+µ22

]
J3µ1(z1)

+
z2− z̄2
2

[
J4µ1µ2(z1, z2)+J4µ1µ2(z̄1, z2)

−

(
1

z21r
2+µ21

+
1

z̄21r
2+µ21

)
J3µ2(z2)

]

+

(
1

r2

[
−
1

2

(
1

z21r
2+µ21

+
1

z22r
2+µ22

)
J2µ1µ2(z1, z2)

+

(
z1

z21r
2+µ21

+
z2

z22r
2+µ22

)
Jcµ1µ2(z1, z2)

]

− (z1↔ z̄1, z2↔ z̄2)+ (z1↔ z̄1)− (z2↔ z̄2)

)

+
1

2r2
[N(z̄1, z̄2)−N(z1, z2)+N(z1, z̄2)−N(z̄1, z2)] .

(A.21)

The separation of divergent and finite parts in all inte-
grals involved was done within the dimensional regulariza-
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tion with d= 2+2ε. Thus, for the simplest integral I2m the
result reads

I2m(a) =
π

ε
(
a2r2+m2

)
(
1+ ε
(
lnπ−Ψ(1)− lnm2

+2 ln
(
a2r2+m2

)))
, (A.22)

or, for its massless case,

I2 =
2π

r2ε

(
1+ ε
(
ln
(
πr2
)
−Ψ(1)

))
. (A.23)

We will use the finite part of I2 and I2m to compute the
integrals in which they are involved. For example, we can
write the finite integrals Kmamb , Lmamb and Mmamb in
terms of the finite part of these integrals, since the diver-
gent parts ultimately cancel when we express them like

Km1m2(z1, z2) =
1

z22r
2+m22

I2m1(z1)+
1

z21r
2+m21

I2m2(z2)

−
r2

(
z21r

2+m21
)(
z22r

2+m22
)I2 , (A.24)

Lm1m2(z1, z2) =
1

z21r
2+m21

I2m2(z2)

−
r2

2
(
z21r

2+m21
)(
z22r

2+m22
)I2 , (A.25)

Nm1m2(z1, z2) =
1

z21r
2+m21

I2m2(z2)−
1

z22r
2+m22

I2m1(z1).

(A.26)

The integrals that involve only two massive propagators
are finite and are calculated in a standard way using Feyn-
man parameters. We obtain

J2mamb =

∫
ddk

(
(k− ra)2+m2a

)(
(k− rb)2+m2b

)

=
π
√
λ
ln
r2(a− b)2+m2a+m

2
b+
√
λ

r2(a− b)2+m2a+m
2
b−
√
λ
,

(A.27)

where we introduce the notation

λ(x, y, z) = x2+y2+ z2−2xy−2xz−2yz , (A.28)

which enables us to define, for the purpose of our
computation,

λ= λ(−r2(a− b)2, α2, β2)

= (α2−β2)2+2(α2+β2)r2(a− b)2+ r4(a− b)4 .
(A.29)

For Jcmamb we get

Jcmamb =
2πr2(a− b)
√
λ

[
1

√
λ+m2a−m

2
b+ r

2(a2− b2)

× ln
a
(√
λ+ r2(a− b)2+m2a−m

2
b

)

b
(√
λ− r2(a− b)2+m2a−m

2
b

)

+
1

√
λ+m2b−m

2
a+ r

2(b2−a2)

× ln
a
(√
λ− r2(a− b)2−m2a+m

2
b

)

b
(√
λ+ r2(a− b)2−m2a+m

2
b

)

]

−
π

a
(
b2r2+m2b

)
− b
(
a2r2+m2a

)

× ln
a
(
b2r2+m2b

)

b
(
a2r2+m2a

) . (A.30)

The ln a
b
terms, which apparently give divergencies when

a or b goes to zero, are spurious: indeed they cancel
because of the symmetrical way the function Jcmamb
appears in a(r;Q1, Q2; z1, z2), b(r;Q1, Q2; z1, z2) or
f(r;Q1, Q2; z1, z2).
Let us now consider the J3m integral. After performing

a special conformal transformation, namely an inversion on
the momentum integration variables and the other dimen-
sional vectors and parameters, a translation and again an
inversion, we arrive at integrals with a smaller number of
propagators, which are calculated in the standard way. The
final result reads

J3m =
2π

r2

{(
1

r2a2+m2
−

1

r2ā2+m2

)
ln
r2a2+m2

r2ā2+m2

+

(
1

r2a2+m2
+

1

r2ā2+m2
+

2

r2aā−m2

)

× ln
(r2a2+m2)(r2ā2+m2)

m2r2

}
. (A.31)

With the same but a more tricky approach we can com-
pute the J4mm integral after performing a special conformal
transformation;we refer to [22] for the complete calculation
and final expression of this integral (see (A.66) and (A.67)
of [22]). Starting from this result, we now derive another
expression in such way that some spurious divergent terms
(appearing when r2 = Q2i , which corresponds to a = 0 or
b = 0) explicitly cancel. Thus it allows us to use it in our
numerical integration code (cf. Sects. 4 and 5). This makes
the explicit expression (A.33) different from the one given
in (A.67) of [22]. The resulting expression for J4µ1µ2 is

J4µ1µ2

=
1

r2
(
r2z̄21+µ

2
1

)(
r2z̄22+µ

2
2

)

× Jfinite3αβ

(
−z1z̄1r2+µ21
z̄21r

2+µ21
,
−z2z̄2r2+µ22
z̄22r

2+µ22
,
r2µ1

r2z̄21+µ
2
1

,
r2µ2

r2z̄22+µ
2
2

, r

)

+
1

r2
(
r2z21+µ

2
1

)(
r2z22 +µ

2
2

)

× Jfinite3αβ

(
−z1z̄1r2+µ21
z21r

2+µ21
,
−z2z̄2r2+µ22
z22r

2+µ22
,
r2µ1

r2z21+µ
2
1

,
r2µ2

r2z22+µ
2
2

, r

)
,

(A.32)

with

Jfinite3αβ (a, b, α, β, r)

=
π

4

{(
8

a− b
+
2(α2−β2)

(a− b)2r2

)
ln
α2

β2
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+
4r2
(
−4+ r2

(
a

a2r2+α2
+ b
b2r2+β2

))
ln b

2r2+β2

a2r2+α2

a(a− b)br2+ bα2−aβ2

−2 ln
α2β2

r4
+

2r4

(a2r2+α2)(b2r2+β2)

×

(
ln
α2β2

r4
−2 ln

α2β2

(a2r2+α2)(b2r2+β2)

)

−

(
8

(a− b)(a(a− b)br2+ bα2−aβ2)

×
1

(
−a2r2+ b2r2−α2+β2+

√
λ
)

)

×

[
(
− (a− b)2r2−α2+β2+

√
λ
)

×

(
−a(b2r2+β2)

b
ln

(
1+
b2r2

β2

)

+(a2r2+α2) ln
a2r2+α2

β2

)

+
(
(a− b)2r2−α2+β2+

√
λ
)

×

(
−b(a2r2+α2)

a
ln

(
1+
a2r2

α2

)

+(b2r2+β2) ln
b2r2+β2

α2

)]

+

((
a2r2− b2r2+α2−β2+

√
λ
)2

(a− b)2r2
√
λ

+
8(a− b)r4

(
−4+ r2

(
a

a2r2+α2
+ b
b2r2+β2

))

(
(a2− b2)r2+α2−β2+

√
λ
)√
λ

+
8
√
λ

(a− b)(a(a− b)br2+ bα2−aβ2)

)

× ln
(a− b)2r2+α2−β2+

√
λ

−(a− b)2r2+α2−β2+
√
λ

+

(
−
(
−a2r2+ b2r2−α2+β2+

√
λ
)2

(a− b)2r2
√
λ

+
8(a− b)r4

(
−4+ r2

(
a

a2r2+α2
+ b
b2r2+β2

))

(
(−a2+ b2)r2−α2+β2+

√
λ
)√
λ

)

× ln
−(a− b)2r2−α2+β2+

√
λ

(a− b)2r2−α2+β2+
√
λ

+

[
16r2
√
λ
+
2r2
(
4+ r2

(
−
(

1
a2r2+α2

)
− 1
b2r2+β2

))

√
λ

−8
(a2− b2)r2+α2−β2

(a− b)
√
λ

−
2
√
λ

(a− b)2r2

]

× ln
(a− b)2r2+α2+β2+

√
λ

(a− b)2r2+α2+β2−
√
λ

}

, (A.33)

where appropriate additional ln r2 terms have been intro-
duced in order to write the final result as made of loga-
rithms of dimensionless quantities. The difference between
these two expressions only involves terms proportional to

ln r2, in accordance with the dimensional regularization,
since J3αβ is a divergent integral. However, at the level of
the final result for J4µ1µ2 , which is both UV and IR finite,
these additional terms of course cancel each other.
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